Towards Improved Constructive Thinking and Greater Holistic Objectivity and Clarity in a Complex World. This Blog is a Resource of Articles on the Thinking Process from Education, Information Science, Philosophy, Science, Linguistics, Psychology, Artificial Intelligence, Sociology, Media Studies, Statistics, Behavioural Sciences, and Other Sources. The Development of the Precision Universal Debating Project acts as the Basic Backdrop to the Whole Subject.
A first principle is a basic, foundational proposition or assumption that cannot be deduced from any other proposition or assumption.
In mathematics, first principles are referred to as axioms or postulates.
In physics and other sciences, theoretical work is said to be from first principles, or ab initio, if it starts directly at the level of established science and does not make assumptions such as empirical model and fitting parameters.
In a formal logical system, that is, a set of propositions that are consistent with one another, it is probable that some of the statements can be deduced from one another. For example, in the syllogism, "All men are mortal; Socrates is a man; Socrates is mortal" the last claim can be deduced from the first two.
A first principle is one that cannot be deduced from any other. The classic example is that of Euclid's (see Euclid's Elements) geometry; its hundreds of propositions can be deduced from a set of definitions, postulates, and common notions: all three types constitute first principles.
In philosophy "first principles" are also commonly referred to as a priori terms and arguments, which are contrasted to a posteriori terms, reasoning or arguments, in that the former are simply assumed and exist prior to the reasoning process and the latter are "posterior" meaning deduced or inferred in the reasoning process. First Principles are generally treated in the realm of philosophy known as epistemology, but are an important factor in any metaphysical speculation.
In philosophy "First principles" is often somewhat interchangeable and synonymous with a priori, datum and axiom or axiomatic reasoning/method.
When Aristotle explains in general terms what he tries to do in his philosophical works, he says he is looking for "first principles" (or "origins"; archai):
In every systematic inquiry (methodos) where there are first principles, or causes, or elements, knowledge and science result from acquiring knowledge of these; for we think we know something just in case we acquire knowledge of the primary causes, the primary first principles, all the way to the elements. It is clear, then, that in the science of nature as elsewhere, we should try first to determine questions about the first principles. The naturally proper direction of our road is from things better known and clearer to us, to things that are clearer and better known by nature; for the things known to us are not the same as the things known unconditionally (haplôs). Hence it is necessary for us to progress, following this procedure, from the things that are less clear by nature, but clearer to us, towards things that are clearer and better known by nature. (Phys. 184a10–21)
The connection between knowledge and first principles is not axiomatic as expressed in Aristotle's account of a first principle (in one sense) as "the first basis from which a thing is known" (Met. 1013a14–15). The search for first principles is not peculiar to philosophy; philosophy shares this aim with biological, meteorological, and historical inquiries, among others. But Aristotle's references to first principles in this opening passage of the Physics and at the start of other philosophical inquiries imply that it is a primary task of philosophy.[1]
Profoundly influenced by Euclid, Descartes was a rationalist who invented the foundationalist system of philosophy. He used the method of doubt, now called Cartesian doubt, to systematically doubt everything he could possibly doubt, until he was left with what he saw as purely indubitable truths. Using these self-evident propositions as his axioms, or foundations, he went on to deduce his entire body of knowledge from them. The foundations are also called a priori truths. His most famous proposition is "Je pense, donc je suis." (I think, therefore I am, or Cogito ergo sum)
Descartes describes the concept of a first principle in the following excerpt from the preface to the Principles of Philosophy (1644):
I should have desired, in the first place, to explain in it what philosophy is, by commencing with the most common matters, as, for example, that the word philosophy signifies the study of wisdom, and that by wisdom is to be understood not merely prudence in the management of affairs, but a perfect knowledge of all that man can know, as well for the conduct of his life as for the preservation of his health and the discovery of all the arts, and that knowledge to subserve these ends must necessarily be deduced from first causes; so that in order to study the acquisition of it (which is properly called [284] philosophizing), we must commence with the investigation of those first causes which are called Principles. Now these principles must possess two conditions: in the first place, they must be so clear and evident that the human mind, when it attentively considers them, cannot doubt of their truth; in the second place, the knowledge of other things must be so dependent on them as that though the principles themselves may indeed be known apart from what depends on them, the latter cannot nevertheless be known apart from the former. It will accordingly be necessary thereafter to endeavor so to deduce from those principles the knowledge of the things that depend on them, as that there may be nothing in the whole series of deductions which is not perfectly manifest.[2]
In physics, a calculation is said to be from first principles, or ab initio, if it starts directly at the level of established laws of physics and does not make assumptions such as empirical model and fitting parameters.
For example, calculation of electronic structure using Schrödinger's equation within a set of approximations that do not include fitting the model to experimental data is an ab initio approach.
A concept is an abstraction or generalization from experience or the result of a transformation of existing ideas. The concept is instantiated (reified) by all of its actual or potential instances, whether these are things in the real world or other ideas. Concepts are treated in many if not most disciplines both explicitly, such as in psychology, philosophy, etc., and implicitly, such as in mathematics, physics, etc.
When the mind makes a generalization such as the concept of tree, it extracts similarities from numerous examples; the simplification enables higher-level thinking.
The term "concept" is traced back to 1554–60 (Latin conceptum – "something conceived"),[2] but what is today termed "the classical theory of concepts" is the theory of Aristotle on the definition of terms.[citation needed] The meaning of "concept" is explored in mainstream information science,[3][4]cognitive science, metaphysics, and philosophy of mind. In computer and information science contexts, especially, the term 'concept' is often used in unclear or inconsistent ways.[5]
In a platonist theory of mind, concepts are construed as abstract objects.[6] This debate concerns the ontological status of concepts – what they are really like.
There is debate as to the relationship between concepts and natural language.[1] However, it is necessary at least to begin by understanding that the concept "dog" is philosophically distinct from the things in the world grouped by this concept – or the reference class or extension.[7] Concepts that can be equated to a single word are called "lexical concepts".[1]
Study of concepts and conceptual structure falls into the disciplines of philosophy, psychology, and cognitive science.[8]
In the simplest terms, a concept is a name or label that regards or treats an abstraction as if it had concrete or material existence, such as a person, a place, or a thing. It may represent a natural object that exists in the real world like a tree, an animal, a stone, etc. It may also name an artificial (man-made) object like a chair, computer, house, etc. Abstract ideas and knowledge domains such as freedom, equality, science, happiness, etc., are also symbolized by concepts. It is important to realize that a concept is merely a symbol, a representation of the abstraction. The word is not to be mistaken for the thing. For example, the word "moon" (a concept) is not the large, bright, shape-changing object up in the sky, but only represents that celestial object. Concepts are created (named) to describe, explain and capture reality as it is known and understood.
Kant declared that human minds possess pure or a priori concepts. Instead of being abstracted from individual perceptions, like empirical concepts, they originate in the mind itself. He called these concepts categories, in the sense of the word that means predicate, attribute, characteristic, or quality. But these pure categories are predicates of things in general, not of a particular thing. According to Kant, there are 12 categories that constitute the understanding of phenomenal objects. Each category is that one predicate which is common to multiple empirical concepts. In order to explain how an a priori concept can relate to individual phenomena, in a manner analogous to an a posteriori concept, Kant employed the technical concept of the schema. He held that the account of the concept as an abstraction of experience is only partly correct. He called those concepts that result from abstraction "a posteriori concepts" (meaning concepts that arise out of experience). An empirical or an a posteriori concept is a general representation (Vorstellung) or non-specific thought of that which is common to several specific perceived objects (Logic, I, 1., §1, Note 1)
A concept is a common feature or characteristic. Kant investigated the way that empirical a posteriori concepts are created.
The logical acts of the understanding by which concepts are generated as to their form are:
comparison, i.e., the likening of mental images to one another in relation to the unity of consciousness;
reflection, i.e., the going back over different mental images, how they can be comprehended in one consciousness; and finally
abstraction or the segregation of everything else by which the mental images differ ...
In order to make our mental images into concepts, one must thus be able to compare, reflect, and abstract, for these three logical operations of the understanding are essential and general conditions of generating any concept whatever. For example, I see a fir, a willow, and a linden. In firstly comparing these objects, I notice that they are different from one another in respect of trunk, branches, leaves, and the like; further, however, I reflect only on what they have in common, the trunk, the branches, the leaves themselves, and abstract from their size, shape, and so forth; thus I gain a concept of a tree.
In cognitive linguistics, abstract concepts are transformations of concrete concepts derived from embodied experience. The mechanism of transformation is structural mapping, in which properties of two or more source domains are selectively mapped onto a blended space (Fauconnier & Turner, 1995; see conceptual blending). A common class of blends are metaphors. This theory contrasts with the rationalist view that concepts are perceptions (or recollections, in Plato's term) of an independently existing world of ideas, in that it denies the existence of any such realm. It also contrasts with the empiricist view that concepts are abstract generalizations of individual experiences, because the contingent and bodily experience is preserved in a concept, and not abstracted away. While the perspective is compatible with Jamesian pragmatism, the notion of the transformation of embodied concepts through structural mapping makes a distinct contribution to the problem of concept formation.[citation needed]
Plato was the starkest proponent of the realist thesis of universal concepts. By his view, concepts (and ideas in general) are innate ideas that were instantiations of a transcendental world of pure forms that lay behind the veil of the physical world. In this way, universals were explained as transcendent objects. Needless to say this form of realism was tied deeply with Plato's ontological projects. This remark on Plato is not of merely historical interest. For example, the view that numbers are Platonic objects was revived by Kurt Gödel as a result of certain puzzles that he took to arise from the phenomenological accounts.[9] Gottlob Frege, founder of the analytic tradition in philosophy, famously argued for the analysis of language in terms of sense and reference. For him, the sense of an expression in language describes a certain state of affairs in the world, namely, the way that some object is presented. Since many commentators view the notion of sense as identical to the notion of concept, and Frege regards senses as the linguistic representations of states of affairs in the world, it seems to follow that we may understand concepts as the manner in which we grasp the world. Accordingly, concepts (as senses) have an ontological status (Morgolis:7)
According to Carl Benjamin Boyer, in the introduction to his The History of the Calculus and its Conceptual Development, concepts in calculus do not refer to perceptions. As long as the concepts are useful and mutually compatible, they are accepted on their own. For example, the concepts of the derivative and the integral are not considered to refer to spatial or temporal perceptions of the external world of experience. Neither are they related in any way to mysterious limits in which quantities are on the verge of nascence or evanescence, that is, coming into or going out of existence. The abstract concepts are now considered to be totally autonomous, even though they originated from the process of abstracting or taking away qualities from perceptions until only the common, essential attributes remained.
In a physicalisttheory of mind, a concept is a mental representation, which the brain uses to denote a class of things in the world. This is to say that it is literally, a symbol or group of symbols together made from the physical material of the brain.[7][8] Concepts are mental representations that allow us to draw appropriate inferences about the type of entities we encounter in our everyday lives.[8] Concepts do not encompass all mental representations, but are merely a subset of them.[7] The use of concepts is necessary to cognitive processes such as categorization, memory, decision making, learning, and inference.[citation needed]
Notable theories on the structure of concepts[edit]
The classical theory of concepts, also referred to as the empiricist theory of concepts,[7] is the oldest theory about the structure of concepts (it can be traced back to Aristotle[8]), and was prominently held until the 1970s.[8] The classical theory of concepts says that concepts have a definitional structure.[1] Adequate definitions of the kind required by this theory usually take the form of a list of features. These features must have two important qualities to provide a comprehensive definition.[8] Features entailed by the definition of a concept must be both necessary and sufficient for membership in the class of things covered by a particular concept.[8] A feature is considered necessary if every member of the denoted class has that feature. A feature is considered sufficient if something has all the parts required by the definition.[8] For example, the classic example bachelor is said to be defined by unmarried and man.[1] An entity is a bachelor (by this definition) if and only if it is both unmarried and a man. To check whether something is a member of the class, you compare its qualities to the features in the definition.[7] Another key part of this theory is that it obeys the law of the excluded middle, which means that there are no partial members of a class, you are either in or out.[8]
The classical theory persisted for so long unquestioned because it seemed intuitively correct and has great explanatory power. It can explain how concepts would be acquired, how we use them to categorize and how we use the structure of a concept to determine its referent class.[1] In fact, for many years it was one of the major activities in philosophy – concept analysis.[1] Concept analysis is the act of trying to articulate the necessary and sufficient conditions for the membership in the referent class of a concept.[citation needed]
Given that most later theories of concepts were born out of the rejection of some or all of the classical theory,[6] it seems appropriate to give an account of what might be wrong with this theory. In the 20th century, philosophers such as Rosch and Wittgenstein argued against the classical theory. There are six primary arguments[6] summarized as follows:
It seems that there simply are no definitions – especially those based in sensory primitive concepts.[6]
It seems as though there can be cases where our ignorance or error about a class means that we either don't know the definition of a concept, or have incorrect notions about what a definition of a particular concept might entail.[6]
Some concepts have fuzzy membership. There are items for which it is vague whether or not they fall into (or out of) a particular referent class. This is not possible in the classical theory as everything has equal and full membership.[6]
Rosch found typicality effects which cannot be explained by the classical theory of concepts, these sparked the prototype theory.[6] See below.
Psychological experiments show no evidence for our using concepts as strict definitions.[6]
Prototype theory came out of problems with the classical view of conceptual structure.[1] Prototype theory says that concepts specify properties that members of a class tend to possess, rather than must possess.[6]Wittgenstein, Rosch, Mervis, Berlin, Anglin, and Posner are a few of the key proponents and creators of this theory.[6][10] Wittgenstein describes the relationship between members of a class as family resemblances. There are not necessarily any necessary conditions for membership, a dog can still be a dog with only three legs.[8] This view is particularly supported by psychological experimental evidence for prototypicality effects.[8] Participants willingly and consistently rate objects in categories like 'vegetable' or 'furniture' as more or less typical of that class.[8][10] It seems that our categories are fuzzy psychologically, and so this structure has explanatory power.[8] We can judge an item's membership to the referent class of a concept by comparing it to the typical member – the most central member of the concept. If it is similar enough in the relevant ways, it will be cognitively admitted as a member of the relevant class of entities.[8] Rosch suggests that every category is represented by a central exemplar which embodies all or the maximum possible number of features of a given category.[8]
Theory-theory is a reaction to the previous two theories and develops them further.[8] This theory postulates that categorization by concepts is something like scientific theorizing.[1] Concepts are not learned in isolation, but rather are learned as a part of our experiences with the world around us.[8] In this sense, concepts' structure relies on their relationships to other concepts as mandated by a particular mental theory about the state of the world.[6] How this is supposed to work is a little less clear than in the previous two theories, but is still a prominent and notable theory.[6] This is supposed to explain some of the issues of ignorance and error that come up in prototype and classical theories as concepts that are structured around each other seem to account for errors such as whale as a fish (this misconception came from an incorrect theory about what a whale is like, combining with our theory of what a fish is).[6] When we learn that a whale is not a fish, we are recognizing that whales don't in fact fit the theory we had about what makes something a fish. In this sense, the Theory-Theory of concepts is responding to some of the issues of prototype theory and classic theory.[6]
According to the theory of ideasthesia (or "sensing concepts"), activation of a concept may be the main mechanism responsible for creation of phenomenal experiences. Therefore, understanding how the brain processes concepts may be central to solving the mystery of how conscious experiences (or qualia) emerge within a physical system e.g., the sourness of the sour taste of lemon.[11] This question is also known as the hard problem of consciousness.[12][13] Research on ideasthesia emerged from research on synesthesia where it was noted that a synesthetic experience requires first an activation of a concept of the inducer.[14] Later research expanded these results into everyday perception.[15]
^ Jump up to: abcdefghiEric Margolis; Stephen Lawrence. "Concepts". Stanford Encyclopedia of Philosophy. Metaphysics Research Lab at Stanford University. Retrieved 6 November 2012.
^ Jump up to: abcdefghijklmnoStephen Lawrence; Eric Margolis (1999). Concepts and Cognitive Science. in Concepts: Core Readings: Massachusetts Institute of Technology. pp. 3–83. ISBN978-0-262-13353-1.
Jump up ^Mroczko-Wąsowicz, A., Nikolić D. (2014) Semantic mechanisms may be responsible for developing synesthesia. Frontiers in Human Neuroscience 8:509. doi: 10.3389/fnhum.2014.00509
Jump up ^Stevan Harnad (1995). Why and How We Are Not Zombies. Journal of Consciousness Studies 1: 164–167.
Jump up ^David Chalmers (1995). Facing Up to the Problem of Consciousness. Journal of Consciousness Studies 2 (3): 200–219.
Jump up ^Nikolić, D. (2009) Is synaesthesia actually ideaesthesia? An inquiry into the nature of the phenomenon. Proceedings of the Third International Congress on Synaesthesia, Science & Art, Granada, Spain, April 26–29, 2009.
Jump up ^Gómez Milán, E., Iborra, O., de Córdoba, M.J., Juárez-Ramos V., Rodríguez Artacho, M.A., Rubio, J.L. (2013) The Kiki-Bouba effect: A case of personification and ideaesthesia. The Journal of Consciousness Studies. 20(1–2): pp. 84–102.
Armstrong, S. L., Gleitman, L. R., & Gleitman, H. (1999). what some concepts might not be. In E. Margolis, & S. Lawrence, Concepts (pp. 225–261). Massachusetts: MIT press.
Carey, S. (1999). knowledge acquisition: enrichment or conceptual change? In E. Margolis, & S. Lawrence, concepts: core readings (pp. 459–489). Massachusetts: MIT press.
Fodor, J. A., Garrett, M. F., Walker, E. C., & Parkes, C. H. (1999). against definitions. In E. Margolis, & S. Lawrence, concepts: core readings (pp. 491–513). Massachusetts: MIT press.
Fodor, J., & LePore, E. (1996). the pet fish and the red Herring: why concept still can't be prototypes. cognition, 253–270.
Hume, D. (1739). book one part one: of the understanding of ideas, their origin, composition, connexion, abstraction etc. In D. Hume, a treatise of human nature. England.
Murphy, G. (2004). Chapter 2. In G. Murphy, a big book of concepts (pp. 11 – 41). Massachusetts: MIT press.
Murphy, G., & Medin, D. (1999). the role of theories in conceptual coherence. In E. Margolis, & S. Lawrence, concepts: core readings (pp. 425–459). Massachusetts: MIT press.
Prinz, J. J. (2002). Desiderata on a Theory of Concepts. In J. J. Prinz, Furnishing the Mind: Concepts and their Perceptual Basis (pp. 1–23). Massechusettes: MIT press.
Putnam, H. (1999). is semantics possible? In E. Margolis, & S. Lawrence, concepts: core readings (pp. 177–189). Massachusetts: MIT press.
Quine, W. (1999). two dogmas of empiricism. In E. Margolis, & S. Lawrence, concepts: core readings (pp. 153–171). Massachusetts: MIT press.
Rey, G. (1999). Concepts and Stereotypes. In E. Margolis, & S. Laurence (Eds.), Concepts: Core Readings (pp. 279–301). Cambridge, Massachusetts: MIT Press.
Rosch, E. (1977). Classification of real-world objects: Origins and representations in cognition. In P. Johnson-Laird, & P. Wason, Thinking: Readings in Cognitive Science (pp. 212–223). Cambridge: Cambridge University Press.
Rosch, E. (1999). Principles of Categorization. In E. Margolis, & S. Laurence (Eds.), Concepts: Core Readings (pp. 189–206). Cambridge, Massachusetts: MIT Press.
Schneider, S. (2011). Concepts: A Pragmatist Theory. In S.Schneider, The Language of Thought: a New Direction. Mass.: MIT Press.
Wittgenstein, L. (1999). philosophical investigations: sections 65–78. In E. Margolis, & S. Lawrence, concepts: core readings (pp. 171–175). Massachusetts: MIT press.
Birger Hjørland. (2009). Concept Theory. Journal of the American Society for Information Science and Technology, 60(8), 1519–1536
Georgij Yu. Somov (2010). Concepts and Senses in Visual Art: Through the example of analysis of some works by Bruegel the Elder. Semiotica 182 (1/4), 475–506.
Daltrozzo J, Vion-Dury J, Schön D. (2010). Music and Concepts. Horizons in Neuroscience Research 4: 157–167.